

Economia Monetária e Financeira Aula T14

8. Mercado de câmbios

8.3. Determinação de taxas de câmbio no curto prazo

• Bibliografia

M. Abreu, A. Afonso, V. Escária, C. Ferreira, *Economia Monetária e Financeira*, 3ª edição, Escolar Editora, 2018, CAP 9.

Aula T14

8.3. DETERMINAÇÃO DA TAXA DE CÂMBIO NO CURTO PRAZO

- Taxa de câmbio e retorno esperado
- Condição da paridade das taxas de juro
- Equilíbrio no mercado de câmbios
- Fatores que influenciam a taxa de câmbio no curto prazo

Taxa de câmbio e retorno esperado

Retorno esperado de um investimento em depósitos em euros para um investidor não residente na área euro.

- J. Smith decide investir em depósitos em euros.
- Por cada libra investida obtém 1/E_t euros
 (E_t é cotação ao certo para o euro relativamente á libra esterlina).
- 2. Os euros que adquiriu rendem $(1/E_t)(1+i^D)$ euros, no final do ano.
- 3. No final do ano, irá converter este montante que recebeu na sua moeda (libra): (1/E_t)(1+i^D) E_{t+1.}
 - Mas como J.Smith hoje desconhece essa taxa, a expetativa que tem hoje do retorno deste investimento, em libras, é:

$$(1/E_t)(1+i^D) E_{t+1}^e -1.$$

Retorno esperado de um investimento em euros para um investidor não residente na área euro

$$\frac{1}{E_{t}} \left(1 + i^{D} \right) E_{t+1}^{e} - 1 =$$

$$= (1+i^{D})\frac{E_{t+1}^{e}}{E_{t}} - 1 = i^{D}\frac{E_{t+1}^{e}}{E_{t}} + \frac{E_{t+1}^{e} - E_{t}}{E_{t}}$$

$$\stackrel{\cong}{=} 1$$

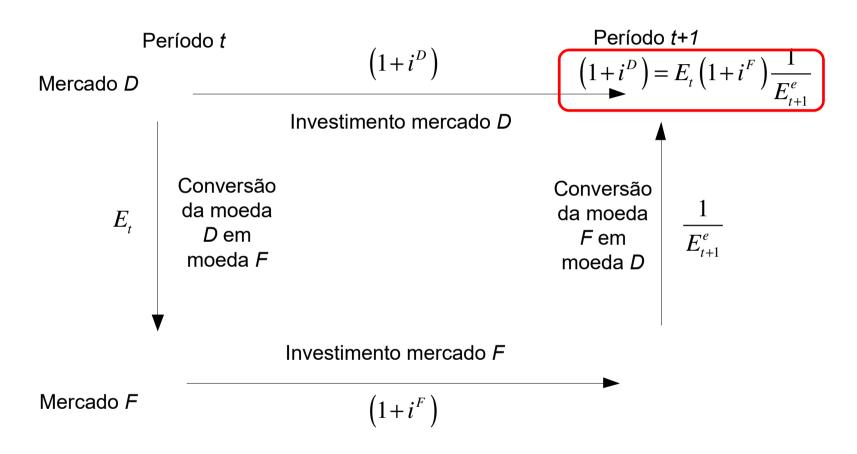
$$\approx \left| i^{D} + \frac{E_{t+1}^{e} - E_{t}}{E_{t}} \right| = tx. juro \ doméstica + expectativa \ tx. \ apreciação$$

moeda nacional

Retorno esperado relativo

	Investidor Estrangeiro (F) (Retorno em unidades de F)	Investidor nacional (D) (Retorno em unidades de D)
Depósito em D	$R^{F,D} = i^D + (E^e_{t+1} - E_t)/E_t$	$R^{D,D}=i^D$
Depósito em F	$R^{F,F}=i^F$	$R^{D,F} = i^F - (E^e_{t+1} - E_t)/E_t$
	DED- DEE 'D 'C . / 50	DDD-DDE 'D 'E / FD
R ^e Relativo	$R^{F,D-}R^{F,F} = i^D - i^F + (E^e_{t+1} - E_t)/E_t$	$R^{D,D-}R^{D,F} = i^D - i^F + (E^e_{t+1} - E_t)/E_t$

D; moeda nacional (ou doméstica)


F; moeda estrangeira (divisa)

E: tx. câmbio entre D e F, cotação ao certo de D

DETERMINAÇÃO DA TAXA DE CÂMBIO NO CURTO PRAZO

Condição de Paridade das Taxas de Juro

(Interest Rate Parity Condition)

Definição: Se existir liberdade de circulação de capitais (LCC) e se depósitos em F e em D forem substitutos perfeitos, verifica-se:

$$R_D = R_F$$

$$i^D = i^F - \frac{E^e_{t+1} - E_t}{E_t}$$

Exemplo:

Se i^D = 10% e a expetativa de apreciação de D: $(E_{t+1}^e - E_t)/E_t$, = 5%

$$\Rightarrow$$
 $i^F = 15\%$

Equilíbrio no mercado de câmbios (E₊; R^e)

Derivação de
$$R^F$$

$$R^F = i^F - \frac{E_{t+1}^e - E_t}{E_t}$$

Assume $i^F = 10\%$, $E_{t+1}^e = 1$

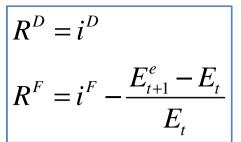
Assim,

A: Se
$$E_t = 0.95$$
, $R^F = .10 - (1 - 0.95)/0.95 = .048 = 4.8\%$

B: Se
$$E_t = 1.00$$
, $R^F = .10 - (1 - 1.0)/1.0 = .100 = 10.0\%$

C: Se
$$E_t = 1.05$$
, $R^F = .10 - (1 - 1.05)/1.05 = .148 = 14.8\%$

Curva R^F liga estes pontos e tem declive positivo

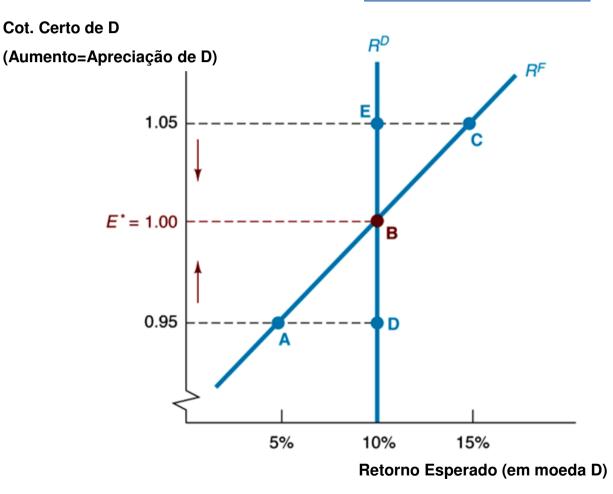

 \triangleright porque quando E_{t} é elevado, aumenta a expetativa de apreciação de F, R^{F}

Derivação de RD

Points B, D, E, $R^D = 10\%$: a curva é vertical

$$R^D = i^D$$

Equilíbrio no mercado de câmbios


Equilíbrio

$$R^D = R^F \text{ em } E^*$$

Se
$$E_{t} > E^{*}$$
,

$$R^F > R^D$$
, vende D, $E_t \downarrow$

Se
$$E_{\rm t} < E^*$$
,
 $R^F < R^D$,
compra D, $E_{\rm t} \uparrow$

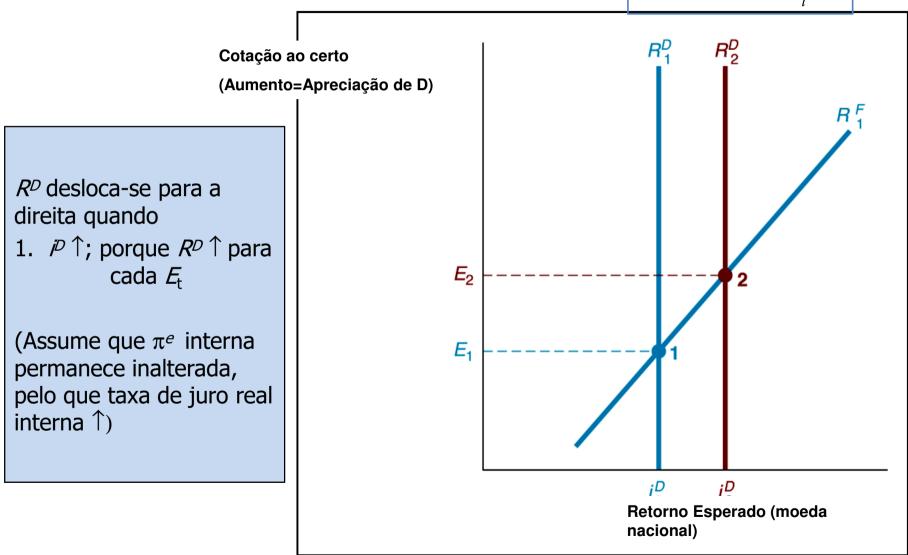
Deslocação de *R^F* e Equilíbrio no Mercado de Câmbios

$$R^{D} = i^{D}$$

$$R^{F} = i^{F} - \frac{E_{t+1}^{e} - E_{t}}{E_{t}}$$

 R^D Cot. Certo (Aumento=Apreciação de D) *R*^F desloca-se para a direita $\uparrow i^F$: porque $R^F \uparrow$ para cada E_t $\downarrow E_{t+1}$: porque expetativa apreciação de F↑ para E_1 cada E_t e $R^F \uparrow$ Ocorre $\downarrow \mathbf{\mathcal{E}}_{t+1}$: E_2 1) *P* Internos↑ 2) Barreiras Alfandegárias ↓ 3) Importações ↑ 4) Exportações ↓ 5) Produtividade ↓ Retorno Esperado (em moeda D)

EMF - ISEG


10

Deslocação de *R*^D e Equilíbrio no Mercado de Câmbios

$$R^{D} = i^{D}$$

$$R^{F} = i^{F} - \frac{E_{t+1}^{e} - E_{t}}{E_{t}}$$

Fatores que afetam R^F e R^D

Alteração do factor	Deslocação da curva do retorno das aplicações em moeda D e em moeda F e efeito sobre a taxa de câmbio	
Aumento da taxa de juro doméstica i ^D	Aumento do retorno de aplicações em moeda <i>D</i> e apreciação da moeda <i>D</i>	Taxa de câmbio E R R R R R Retorno esperado
Aumento da taxa de juro estrangeira i^F	Aumento do retorno de aplicações em moeda F e apreciação da moeda F (Depreciação da moeda D)	Taxa de câmbio $E $

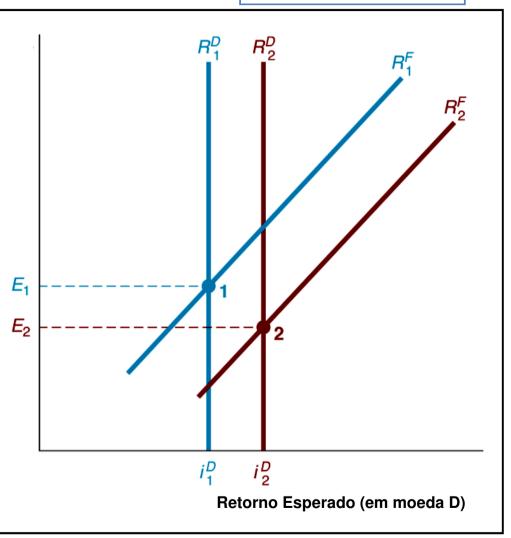
Fatores que afetam R^F e R^D

Alteração do factor	Deslocação da curva do retorno das aplicações em moeda D e em moeda F e efeito sobre a taxa de câmbio	
Aumento do nível esperado de preços doméstico	Expectativa de depreciação da moeda D , aumento do retorno de aplicações em moeda F e apreciação da moeda F (depreciação da moeda D)	Taxa de câmbio $E $
Aumento da preferência esperada por bens importados	Expectativa de depreciação da moeda D , aumento do retorno de aplicações em moeda F e apreciação da moeda F (depreciação da moeda D)	Taxa de câmbio $E $
Aumento da produtividade doméstica esperada	Expectativa de apreciação de moeda D , aumento do retorno de aplicações em moeda D e apreciação da moeda D	Taxa de câmbio $E $

Inpacto sobre E de $\uparrow i$ resultante $\uparrow \pi^e$

Cotação ao certo

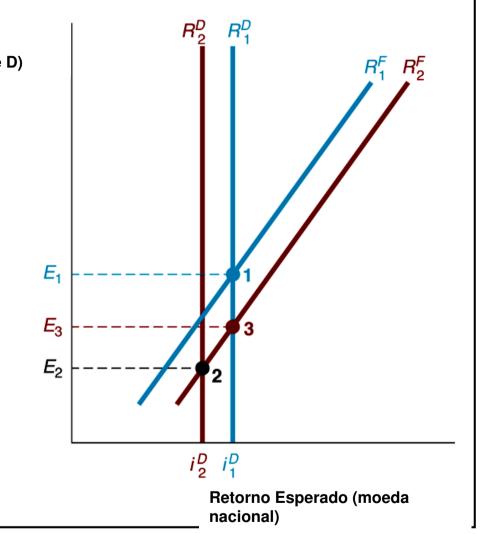
$$R^{D} = i^{D}$$


$$R^{F} = i^{F} - \frac{E_{t+1}^{e} - E_{t}}{E_{t}}$$

2. $\pi^e \uparrow$, $i^D \uparrow$, R^D desloca-se p/direita

No entanto porque quando $\pi^e \uparrow$ o efeito s/ E^e_{t+1} > efeito s/ $i^D \Rightarrow$ R^F resultante > R^D resultante e $E_t \downarrow$

Inpacto sobre *E* de ↑M^s


Cot. Certo

(Aumento=Apreciação de D)

- 1. $M^{s} \uparrow, P \uparrow, E^{e}_{t+1} \downarrow$, expetativa de depreciação de $D \uparrow, R^{F}$ desloca-se p/ direita
- 2. $M^{s} \uparrow, i^{D} \downarrow, R^{D}$ desloca-se p/esquerda

 Vai para ponto 2 e $E_{t} \downarrow$
- 3. **No longo prazo**, *i*^D retorna ao ponto inicial, *R*^D retorna pos. inicial, vai para ponto 3

Sobre-depreciação da taxa de câmbio (Exchange Rate Overshooting)

